Har du en ingeniørgrad og synes maskinlæring og kunstig intelligens er spennende? Da kan denne masteren passe for deg.
2 år/4 semestre
120
Engelsk
23 for lokale søkere og 2 for internasjonale søkere
August hvert år
15. april for lokale søkere Søk på Master of Science in Data Science i Søknadsweb:
Om studiet
Evnen til å opprette, administrere og utnytte data har blitt en av de viktigste utfordringene i arbeidslivet. Med kompetanse i Data Science er du svært ettertraktet på arbeidsmarkedet. Her kan du bidra til utvikling og bruk av smarte løsninger og digitalisering.
- I emner som maskinlæring og generativ AI går vi i dybden på kunstig intelligens og maskinlæring. Her lærer du blant annet om hvordan teknologien bak kunstig intelligens fungerer.
- For å analysere, forstå og bruke store datamengder, krever faget tverrfaglig kunnskap. Dette studiet gir deg som har en annen ingeniørbakgrunn mulighet til å rette deg mot digitalisering og dataanalyse.
- Her kan du fordype deg i informasjonsgjenfinning, datautvinning og statistikk.
- Data Science er avgjørende for å skape smarte løsninger, både innenfor datateknologi og andre ingeniørdisipliner.
- Du får mulighet til å skrive masteroppgaven din i samarbeid med industrien og bidra inn i et sterkt forskningsmiljø ved UiS.
- Dette studieprogrammet gir deg tittelen sivilingeniør.
Merk at det kan komme små endringer i "Studieplan og emner". Dette oppdateres 1. februar 2025.
Hva kan du bli?
Med en mastergrad i Data Science kan du få en stilling i nesten alle bransjer. Noen eksempler på virksomheter hvor du kan finne arbeid er IT-konsulentselskaper, virksomheter innen telekommunikasjon, energirelaterte virksomheter, sykehus og andre offentlige etater. Data Science gir grunnlag for arbeid med dataanalyse og utvikling av databehandlingssystemer for hele datalivssyklusen. Det bygger kunnskap og ferdigheter innen avansert statistikk, datautvinning, maskinlæring og prosessering av store datavolumer.
Fullført mastergrad gir grunnlag for opptak på PhD-studier innen informasjonsteknologi, matematikk og fysikk.
Læringsutbytte
Alle studieprogram ved UiS har definerte mål for hva du skal lære gjennom studieløpet. Les mer om læringsutbyttet for dette studieprogrammet.
Etter fullført toårig mastergrad i Data Science skal kandidaten ha følgende samlede læringsutbytte, definert i form av kunnskap, ferdigheter og generell kompetanse:
Kunnskap
K1: Avansert kunnskap innen Data Science, som inkluderer databehandling, maskinlæring, datautvinning, statistikk og typiske programmeringsspråk for området, inkludert: Python and R.
K2: Spesialisert innsikt i dataanalyse.
K3: Dyp kunnskap om vitenskapelig teori og metoder i Data Science.
K4: Anvende kunnskap om algoritmer for statistisk analyse, maskinlæring eller datautvinning på nye områder innen datavitenskap.
K5: Analyser faglige problemstillinger basert på det fjerde vitenskapsparadigmet, 4Vs av store data (volum, hastighet, variasjon og variasjon), datadrevet tilnærming, CRISP-DM (standardprosess for datautvinning på tvers av industrien).
Ferdigheter
S1: Analysere og forholde seg kritisk til ulike informasjonskilder, datasett og dataprosesser; og anvende disse for å strukturere og formulere slutninger basert på dataene.
S2: Analysere eksisterende teorier, metoder og tolkninger innenfor fagområdet og arbeide selvstendig med å anvende og vurdere ulike lagrings- og databehandlingsteknologier.
S3: Bruk CRISP-DM og vitenskapelige metoder for å utvikle dataanalyseprogrammer på en uavhengig måte.
S4: Gjennomføre uavhengig, begrenset datainnsamling, analyse og evaluering i henhold til etablerte designprinsipper i samsvar med gjeldende forskningsetiske standarder.
Generell kompetanse
G1: Analysere relevante etiske problemer som oppstår gjennom databruk og datagjenoppretting.
G2: Bruke sine kunnskaper og ferdigheter på nye områder for å utføre avanserte oppgaver og prosjekter knyttet til databehandling, dataanalyse og optimalisering.
G3: Formidle resultater av omfattende dataanalyse og utviklingsarbeid, og beherske datavitenskapelige uttrykk.
G4: Kommunisere om faglige problemstillinger, analyser og konklusjoner innenfor fagområdet, både med spesialister og til allmennheten.
G5: Bidra til nye ideer og innovasjonsprosesser ved å introdusere datadrevne tilnærminger, omfattende dataanalyse og utviklingsarbeid, og mestre datavitenskapelige uttrykk.
Studieplan og emner
Oppstartssemester: 2024
-
Obligatoriske emner
-
Nettskyteknologier
Første år, semester 1
-
Data-intensive Systems and Algorithms
Første år, semester 1
-
Introduksjon til datavitenskap
Første år, semester 1
-
Statistisk modellering og simulering
Første år, semester 1
-
Datautvinning og dyplæring
Første år, semester 2
-
Algoritmeteori
Første år, semester 2
-
Maskinlæring
Første år, semester 2
-
Masteroppgave i Data Science
Andre år, semester 3
-
-
3. semester ved UiS eller utveksling
-
Emner ved UiS 3. semester
-
Velg ett emne
-
Investeringsanalyse
Andre år, semester 3
-
Prosjektledelse
Andre år, semester 3
-
-
Anbefalte valgemner 3. semester
-
Reinforcement Learning
Andre år, semester 3
-
Informasjonsgjenfinning og tekstutvinning
Andre år, semester 3
-
Bildebehandling og maskinsyn
Andre år, semester 3
-
Statistisk læring
Andre år, semester 3
-
-
Andre valgemner 3. semester
-
Diskret simulering og ytelsesanalyse
Andre år, semester 3
-
Prosjekt i datateknologi
Andre år, semester 3
-
Dype nevrale nett
Andre år, semester 3
-
Sannsynlighetsregning og statistikk 2
Andre år, semester 3
-
-
-
Utveksling 3. semester
-
3. semester utveksling
-
-
Utveksling
Ved å reise til en av våre partnerinstitusjoner i utlandet som en del av studiet har du mulighet til å få en unik utdanning. I tillegg til økte karrieremuligheter, vokser du som person og får se faget ditt fra en ny vinkel. Alt om utveksling
Utvekslingssemester
3. semester
Studenter kan reise på utenlandsopphold i 3. semester av masterprogrammet i Data Science. I utlandet må du velge emner som gir en tilsvarende fordypning innen ditt fagområde, og disse må være godkjente før du reiser ut. Det er også viktig at emnene du skal ta i utlandet ikke overlapper med emner du alt har tatt eller skal ta senere i studiet. Et tips er å tenke på din spesialisering og/eller ditt interessefelt. Du må velge minst ett ikke-realfaglig/teknologisk emne tilsvarende 5-10 studiepoeng (feks. økonomi, språk, etikk, prosjektledelse, grønn omstilling eller lignende).
Flere muligheter
I tillegg til de anbefalte lærestedene som er listet opp under, har UiS en rekke avtaler med universitet utenfor Europa som er aktuelle for alle studenter på UiS med forbehold om at de finner et relevant fagtilbud. Innen Norden kan alle studenter benytte seg av Nordlys- og Nordtek-nettverkene.
Kontaktperson
Veiledning og forhåndsgodkjenning av emner: Sheryl Josdal
Generelle spørsmål om utveksling: Gå til utvekslingsveilederen i Digital studentekspedisjon
Se hvor du kan dra på utveksling
The University of Adelaide
Australia
Aalborg Universitet
Danmark
Grenoble Institute of Technology
Frankrike
Politecnico di Milano University
Italia
University of Pisa
Italia
University of Twente, Enschede
Nederland
Lodz University of Technology
Polen
RWTH Aachen University
Tyskland
Technical University of Munich
Tyskland
Opptakskrav
Opptakskravet er fullført bachelorgrad i ingeniørfag, i henhold til nasjonal rammeplan for ingeniørutdanning, eller tilsvarende utdanning med minst 10 sp med programmering og ytterligere 10 sp i datatekniske emner (databaser, algoritmer og datastrukturer, videregående programmering, operativsystemer eller lignende). Alle søkere må ha minimum 25 sp matematikk, 5 sp statistikk og 7,5 sp fysikk. Søkere med utenlandsk utdanning må ha tilsvarende 25 sp innen matematikk, 5 sp statistikk og 7,5 sp fysikk.
Det er satt en laveste gjennomsnittskarakter for opptak på C.
Det kan kreves minst 50 sp i programmering og datatekniske emner i tilfeller der nøyaktig innhold i programmering og datatekniske emner ikke kan bekreftes gjennom standardiserte læringsutbyttebeskrivelser basert på Bolognaprosessen.
Hvis du har fullført studier/emner utenfor Universitetet i Stavanger, må du laste opp originale emnebeskrivelser på norsk eller engelsk, som inneholder et klart definert læringsutbytte (curriculum). Emnenavn og -koder på emnebeskrivelsene må samsvare med karakterutskrift. Dersom du ikke laster opp emnebeskrivelser, risikerer du at søknaden din blir nedprioritert.
Spørsmål om søking og opptak?
Slik søker du opptak til 2-årig master.
Hva er snittet?
Se poenggrenser fra tidligere år.
Kontakt oss
Slik er det å studere ved UiS
Spørsmål og svar
Hva er forskjellen på Data Science og datateknologi?
Hva lærer du når du velger program Data Science?
Programmet Data Science lærer deg å trekke ut relevant informasjon fra en kompilering av store datasett fra forskjellige kilder. Evnen til å opprette, administrere og utnytte data har blitt en av de viktigste utfordringene for utøvere i nesten alle disipliner, sektorer og næringer.
Det gir grunnlag for arbeid innen dataanalyse og utvikling av databehandlingssystemer for hele data livssyklus. Du får kunnskap og ferdigheter i avansert statistikk, datautvinning, maskinlæring og behandling av store datamengder. Studiet vil være svært ettertraktet i framtidens arbeidsmarked, med utvikling av smarte løsninger som for eksempel i smarte byer, med smart energi og digitalisering.
Hva lærer du når du velger program datateknologi?
I programmet datateknologi lærer deg ledelse, design og programmering av datasystemer. Evnen til å integrere kunnskap og ferdigheter i sikkerhet, pålitelighet og skalerbarhet sammen med algoritmeteori og statistikk er nødvendig for å svare på utfordringer i datasystemer i alle bransjer.
Det gir grunnlag for arbeid med utvikling og planlegging av kommersielle datasystemer til forskjellige formål. Du får kunnskap og ferdigheter innen nettverkssikkerhet, pålitelighet av distribuerte systemer, simulering og modellering.
Liknende utdanninger
Kontakt oss
Fakultetsadministrasjonen TN
Kontor for utdanningsadministrative tjenester
Institutt for data- og elektroteknologi